行业资讯

首页-利豪娱乐-利豪平台【利豪注册登录】

2022-12-28 11:17:01 heminbo888 7

首页-利豪娱乐-利豪平台【利豪注册登录】报道,运动介质的电动力学,这个启发爱因斯坦那一代科学家发展出狭义相对论的著名问题,最近再一次成为中国科技界的热点话题。在热烈的讨论过程中,有一个问题反复出现,就是对于描写电磁场运动规律的麦克斯韦方程组,有非相对论极限吗?当运动介质的速度远低于光速的时候,我们可以不考虑相对论效应,用伽利略变换来近似洛伦兹变换吗?经过讨论,笔者发现许多科技工作者对这个问题存在不同程度的误解,其中最大的一个就是以为介质速度不快就没有相对论效应,伽利略变换也近似可用。造成这一误解的主要原因还是对狭义相对论的理解不够透彻,尤其是对狭义相对论与经典电磁学之间的密切联系缺乏认识。下面,笔者将通过这篇短文,专门介绍一下洛伦兹变换的低速近似问题。


01 只有在研究告诉运动的物体时才需要 狭义相对论吗?


许多介绍相对论的科普文章和教科书都以相对论力学为主要介绍对象,这一方面是因为力学研究的对象更贴近人们的生活,另一方面也是为了方便“炫耀”相对论的神奇,以便把“时间旅行”、“回到未来”这些荒诞不经的幻想和薛定谔的那只猫一样,推上大众文化的餐桌,反复消费。其实,狭义相对论是19世纪下半叶科学家们在研究电磁现象的时候逐步建立起来的。在笔者看来,对电磁现象而言,狭义相对论的出现非常自然和必要,相反非相对论的电磁世界才是荒唐且不合逻辑的。实际上,狭义相对论的提出,正是为了统一力学世界和电磁世界中关于参照系变换截然不同的观念[1]。让我们先从相对性原理讲起。


相对性原理是一条自然界的公理,即物理规律在任何惯性参照系下都保持一致。我们很容易检验,经典的牛顿力学满足相对性原理。在通过伽利略变换,把时空坐标从一个参照系变换到另一个参照系后,物体的坐标、速度、动量等都会发生改变;但决定这些物理量演化的规律保持相同的形式,即牛顿三大定律在不同的惯性系下保持完全一样的形式。比如牛顿第一定律:当一个物体处于不受力的状态时,它的速度保持不变。在实验室参照系S下牛顿第一定律可以写成u=常数。现在假设一个以速度v相对于实验室参照系匀速直线运动的S′系,根据牛顿力学背后的绝对时空观,我们可以用如下伽利略变换建立不同惯性系下的坐标(xyzt)和(x′,y′,z′,t′)之间的关系:x′=x-vty′=yz′=zt′=t,并得到在S′系下牛顿第一定律的形式为u′=u-v=常数。可以看到,虽然在不同惯性系下观察者分别测到不同的速度uu′,但不受外力的物体的运动速度在各自的参考系下均保持不变,这一运动学规律的形式是完全一致的。


从上面的例子可以看到,相对性原理在牛顿力学中是非常显然的。但是在电磁世界里则完全相反:如果还是坚持牛顿力学的绝对时空观,用伽利略变换来联系不同惯性系的话,相对性原理是显然不成立的。或者也可以这样说,要使电磁现象的规律满足相对性原理,我们需要时空坐标以不同于伽利略变换的方式变换。下面就来看一个非常简单的例子[2],假设在实验室系S中有一个试探点电荷被置于在一根沿着z方向的通电导线的附近x处,试探电荷保持静止,导线保持电中性并通以电流I=env,其中n是导线中电子的线密度,v是电子的漂移速度。在S系的观测者看来,导线中的电子以-v的速度沿着反方向运动而正电荷保持静止,从而形成+z方向的电流I,又由于电子和正电荷的线密度相等,都为n,因此正负电荷完全抵消,导线是电中性的。根据电磁学知识,我们可以轻松得到试探电荷处的磁场强度


。由于我们考虑的试探电荷在实验室系中处于静止状态,因而受到的洛伦兹力严格为零;再加上导线是电中性的,在试探电荷处不产生任何电场,在实验室系的观测者看来,试探电荷受到的总的电磁力严格为零,电荷不会产生任何运动。总结一下,在S系的观测者看来,


下面让我们换到另一个惯性参照系S′来观测同一个物理过程。现在我们选择的参照系是以导线中电子的漂移速度-v沿着导线匀速运动的参照系。如果按照牛顿力学的观点对时空坐标做如下伽利略变换:


那么在S′参照系的观察者看来,试探电荷以v的速度运动,导线中的电子是静止的,而正电荷以的速度沿着导线运动。根据电流的定义,我们得到在S′系的电流I′不变,还是等于S系中观测到的电流I,同时导线依然是电中性的,从而产生与S系中一样的电磁场。现在我们可以总结一下对这一问题进行伽利略变换得到的结果:在S′系中观测到的电磁场严格等于在S系中的电磁场,也就是在伽利略变换下电磁场不变 E′ = EB′ = B ,因为产生它们的“源”:电流和电荷密度都不变。但是,原先在S系中静止的试探电荷,在S′系的观测者看来以v的速度沿着导线方向运动,从而受到一个指向导线的大小


平台注册
平台登录
平台注册